skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Jian-Min"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In our previous study, we identified a shift in the synchrotron peak frequency of the blazar B2 1308+326 from 1012.9to 1014.8Hz during a flare, suggesting it could be a changing-look blazar (CLB). In this work, we investigate the changing-look behaviour of B2 1308+326 by analysing a newly acquired optical spectrum and comparing it with an archival spectrum. We find that between the two epochs, the continuum flux increased by a factor of ~4.4, while the Mgiiemission line flux decreased by a factor of 1.4 ± 0.2. Additionally, the equivalent width of the Mgiiline reduced from ~20 to ~3 Å, indicating an apparent shift from a flat-spectrum radio quasar (FSRQ) class to a BL Lacertae (BL Lac) class. Despite this apparent change, the ratio of accretion disk luminosity to Eddington luminosity remains >10−2during both epochs, indicating efficient accretion persists in B2 1308+326. The measured black hole mass remains consistent with an average log M BH = 8.44 M. Our findings suggest that B2 1308+326 is not a genuine CLB but rather an intrinsic FSRQ that emerges as a BL Lac during high-flux states due to enhanced nonthermal emission. 
    more » « less
    Free, publicly-accessible full text available December 31, 2025
  2. Abstract We observed the Seyfert 1 galaxy Mrk 817 during an intensive multiwavelength reverberation mapping campaign for 16 months. Here, we examine the behavior of narrow UV absorption lines seen in the Hubble Space Telescope/Cosmic Origins Spectrograph spectra, both during the campaign and in other epochs extending over 14 yr. We conclude that, while the narrow absorption outflow system (at −3750 km s−1with FWHM = 177 km s−1) responds to the variations of the UV continuum as modified by the X-ray obscurer, its total column density (logNH= 19.5 0.13 + 0.61 cm−2) did not change across all epochs. The adjusted ionization parameter (scaled with respect to the variations in the hydrogen-ionizing continuum flux) is logUH= −1.0 0.3 + 0.1 . The outflow is located at a distance smaller than 38 pc from the central source, which implies a hydrogen density ofnH> 3000 cm−3. The absorption outflow system only covers the continuum emission source and not the broad emission line region, which suggests that its transverse size is small (< 1016cm), with potential cloud geometries ranging from spherical to elongated along the line of sight. 
    more » « less
  3. ABSTRACT Determining black hole masses and accretion rates with better accuracy and precision is crucial for understanding quasars as a population. These are fundamental physical properties that underpin models of active galactic nuclei. A primary technique to measure the black hole mass employs the reverberation mapping of low-redshift quasars, which is then extended via the radius–luminosity relationship for the broad-line region to estimate masses based on single-epoch spectra. An updated radius–luminosity relationship incorporates the flux ratio of optical Fe ii to H β ($$\equiv \mathcal {R}_{\rm Fe}$$) to correct for a bias in which more highly accreting systems have smaller line-emitting regions than previously realized. In this work, we demonstrate and quantify the effect of using this Fe-corrected radius-luminosity relationship on mass estimation by employing archival data sets possessing rest-frame optical spectra over a wide range of redshifts. We find that failure to use an Fe-corrected radius predictor results in overestimated single-epoch black hole masses for the most highly accreting quasars. Their accretion rate measures (LBol/LEdd and $$\dot{\mathscr{M}}$$ ) are similarly underestimated. The strongest Fe-emitting quasars belong to two classes: high-z quasars with rest-frame optical spectra, which, given their extremely high luminosities, require high accretion rates, and their low-z analogues, which, given their low black holes masses, must have high accretion rates to meet survey flux limits. These classes have mass corrections downward of about a factor of two, on average. These results strengthen the association of the dominant Eigenvector 1 parameter $$\mathcal {R}_{\rm Fe}$$ with the accretion process. 
    more » « less
  4. Abstract We performed a rigorous reverberation-mapping analysis of the broad-line region (BLR) in a highly accreting (L/LEdd= 0.74–3.4) active galactic nucleus, Markarian 142 (Mrk 142), for the first time using concurrent observations of the inner accretion disk and the BLR to determine a time lag for the Hβλ4861 emission relative to the ultraviolet (UV) continuum variations. We used continuum data taken with the Niel Gehrels Swift Observatory in theUVW2 band, and the Las Cumbres Observatory, Dan Zowada Memorial Observatory, and Liverpool Telescope in thegband, as part of the broader Mrk 142 multiwavelength monitoring campaign in 2019. We obtained new spectroscopic observations covering the Hβbroad emission line in the optical from the Gemini North Telescope and the Lijiang 2.4 m Telescope for a total of 102 epochs (over a period of 8 months) contemporaneous to the continuum data. Our primary result states a UV-to-Hβtime lag of 8.68 0.72 + 0.75 days in Mrk 142 obtained from light-curve analysis with a Python-based running optimal average algorithm. We placed our new measurements for Mrk 142 on the optical and UV radius–luminosity relations for NGC 5548 to understand the nature of the continuum driver. The positions of Mrk 142 on the scaling relations suggest that UV is closer to the “true” driving continuum than the optical. Furthermore, we obtain log ( M / M ) = 6.32 ± 0.29 assuming UV as the primary driving continuum. 
    more » « less
  5. Abstract Detecting continuous nanohertz gravitational waves (GWs) generated by individual close binaries of supermassive black holes (CB-SMBHs) is one of the primary objectives of pulsar timing arrays (PTAs). The detection sensitivity is slated to increase significantly as the number of well-timed millisecond pulsars will increase by more than an order of magnitude with the advent of next-generation radio telescopes. Currently, the Bayesian analysis pipeline using parallel tempering Markov Chain Monte Carlo has been applied in multiple studies for CB-SMBH searches, but it may be challenged by the high dimensionality of the parameter space for future large-scale PTAs. One solution is to reduce the dimensionality by maximizing or marginalizing over uninformative parameters semianalytically, but it is not clear whether this approach can be extended to more complex signal models without making overly simplified assumptions. Recently, the method of diffusive nested (DNest) sampling has shown capability in coping with high dimensionality and multimodality effectively in Bayesian analysis. In this paper, we apply DNest to search for continuous GWs in simulated pulsar timing residuals and find that it performs well in terms of accuracy, robustness, and efficiency for a PTA including  ( 10 2 ) pulsars. DNest also allows a simultaneous search of multiple sources elegantly, which demonstrates its scalability and general applicability. Our results show that it is convenient and also highly beneficial to include DNest in current toolboxes of PTA analysis. 
    more » « less
  6. Abstract An intensive reverberation mapping campaign of the Seyfert 1 galaxy Mrk 817 using the Cosmic Origins Spectrograph on the Hubble Space Telescope revealed significant variations in the response of broad UV emission lines to fluctuations in the continuum emission. The response of the prominent UV emission lines changes over an ∼60 day duration, resulting in distinctly different time lags in the various segments of the light curve over the 14 month observing campaign. One-dimensional echo-mapping models fit these variations if a slowly varying background is included for each emission line. These variations are more evident in the Civlight curve, which is the line least affected by intrinsic absorption in Mrk 817 and least blended with neighboring emission lines. We identify five temporal windows with a distinct emission-line response, and measure their corresponding time delays, which range from 2 to 13 days. These temporal windows are plausibly linked to changes in the UV and X-ray obscuration occurring during these same intervals. The shortest time lags occur during periods with diminishing obscuration, whereas the longest lags occur during periods with rising obscuration. We propose that the obscuring outflow shields the broad UV lines from the ionizing continuum. The resulting change in the spectral energy distribution of the ionizing continuum, as seen by clouds at a range of distances from the nucleus, is responsible for the changes in the line response. 
    more » « less
  7. Abstract The AGN STORM 2 campaign is a large, multiwavelength reverberation mapping project designed to trace out the structure of Mrk 817 from the inner accretion disk to the broad emission line region and out to the dusty torus. As part of this campaign, Swift performed daily monitoring of Mrk 817 for approximately 15 months, obtaining observations in X-rays and six UV/optical filters. The X-ray monitoring shows that Mrk 817 was in a significantly fainter state than in previous observations, with only a brief flare where it reached prior flux levels. The X-ray spectrum is heavily obscured. The UV/optical light curves show significant variability throughout the campaign and are well correlated with one another, but uncorrelated with the X-rays. Combining the Swift UV/optical light curves with Hubble Space Telescope UV continuum light curves, we measure interband continuum lags,τ(λ), that increase with increasing wavelength roughly followingτ(λ) ∝λ4/3, the dependence expected for a geometrically thin, optically thick, centrally illuminated disk. Modeling of the light curves reveals a period at the beginning of the campaign where the response of the continuum is suppressed compared to later in the light curve—the light curves are not simple shifted and scaled versions of each other. The interval of suppressed response corresponds to a period of high UV line and X-ray absorption, and reduced emission line variability amplitudes. We suggest that this indicates a significant contribution to the continuum from the broad-line region gas that sees an absorbed ionizing continuum. 
    more » « less
  8. null (Ed.)
    Abstract Quasar black hole masses are most commonly estimated using broad emission lines in single epoch spectra based on scaling relationships determined from reverberation mapping of small samples of low-redshift objects. Several effects have been identified requiring modifications to these scaling relationships, resulting in significant reductions of the black hole mass determinations at high redshift. Correcting these systematic biases is critical to understanding the relationships among black hole and host galaxy properties. We are completing a program using the Gemini North telescope, called the Gemini North Infrared Spectrograph (GNIRS) Distant Quasar Survey (DQS), that has produced rest-frame optical spectra of about 200 high-redshift quasars (z = 1.5–3.5). The GNIRS-DQS will produce new and improved ultraviolet-based black hole mass and accretion rate prescriptions, as well as new redshift prescriptions for velocity zero points of high-z quasars, necessary to measure feedback. 
    more » « less
  9. ABSTRACT We report the results of long-term reverberation mapping campaigns of the nearby active galactic nuclei (AGNs) NGC 4151, spanning from 1994 to 2022, based on archived observations of the FAST Spectrograph Publicly Archived Programs and our new observations with the 2.3 m telescope at the Wyoming Infrared Observatory. We reduce and calibrate all the spectra in a consistent way, and derive light curves of the broad H β line and 5100 Å continuum. Continuum light curves are also constructed using public archival photometric data to increase sampling cadences. We subtract the host galaxy contamination using Hubble Space Telescope imaging to correct fluxes of the calibrated light curves. Utilizing the long-term archival photometric data, we complete the absolute flux-calibration of the AGN continuum. We find that the H β time delays are correlated with the 5100 Å luminosities as $$\tau _{\rm H\beta }\propto L_{5100}^{0.46\pm 0.16}$$. This is remarkably consistent with Bentz et al. (2013)’s global size–luminosity relationship of AGNs. Moreover, the data sets for five of the seasons allow us to obtain the velocity-resolved delays of the H β line, showing diverse structures (outflows, inflows, and discs). Combining our results with previous independent measurements, we find the measured dynamics of the H β broad-line region (BLR) are possibly related to the long-term trend of the luminosity. There is also a possible additional ∼1.86 yr time lag between the variation in BLR radius and luminosity. These results suggest that dynamical changes in the BLR may be driven by the effects of radiation pressure. 
    more » « less